enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decay energy - Wikipedia

    en.wikipedia.org/wiki/Decay_energy

    alpha decay; The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E. If A is the radioactive activity, i.e. the number of transforming atoms per time, M the molar mass, then the radiation power P is: = (). or

  3. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Likewise, gamma radiation and X-rays were found to be high-energy electromagnetic radiation. The relationship between the types of decays also began to be examined: For example, gamma decay was almost always found to be associated with other types of decay, and occurred at about the same time, or afterwards.

  4. Gamma ray - Wikipedia

    en.wikipedia.org/wiki/Gamma_ray

    Gamma decay may also follow nuclear reactions such as neutron capture, nuclear fission, or nuclear fusion. Gamma decay is also a mode of relaxation of many excited states of atomic nuclei following other types of radioactive decay, such as beta decay, so long as these states possess the necessary component of nuclear spin. When high-energy ...

  5. Decay scheme - Wikipedia

    en.wikipedia.org/wiki/Decay_scheme

    The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.

  6. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Instead, the half-life is defined in terms of probability: "Half-life is the time required for exactly half of the entities to decay on average". In other words, the probability of a radioactive atom decaying within its half-life is 50%. [2] For example, the accompanying image is a simulation of many identical atoms undergoing radioactive decay.

  7. Caesium-137 - Wikipedia

    en.wikipedia.org/wiki/Caesium-137

    Barium-137m has a half-life of about 153 seconds, and is responsible for all of the gamma ray emissions in samples of 137 Cs. Barium-137m decays to the ground state by emission of photons having energy 0.6617 MeV. [8] A total of 85.1% of 137 Cs decay generates gamma ray emission in this manner.

  8. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    This is because the mass–energy is a convex function of atomic number, so all nuclides on an odd isobaric chain except one have a lower-energy neighbor to which they can decay by beta decay. See Mattauch isobar rule. (123 Te is expected to decay to 123 Sb, but the half-life appears to be so long that the decay has never been observed.)

  9. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    As in β decay, the decay product X′ has greater binding energy and it is closer to the middle of the valley of stability. The α particle carries away two neutrons and two protons, leaving a lighter nuclide. Since heavy nuclides have many more neutrons than protons, α decay increases a nuclide's neutron-proton ratio.