Search results
Results from the WOW.Com Content Network
Repeat step three until there is a new row with one more number than the previous row (do step 3 until = +) The number on the left hand side of a given row is the Bell number for that row. (,) Here are the first five rows of the triangle constructed by these rules:
A noncrossing partition of S is a partition in which no two blocks "cross" each other, i.e., if a and b belong to one block and x and y to another, they are not arranged in the order a x b y. If one draws an arch based at a and b , and another arch based at x and y , then the two arches cross each other if the order is a x b y but not if it is ...
The vertex disjoint version of the above edge-disjoint shortest pair of paths algorithm is obtained by splitting each vertex (except for the source and destination vertices) of the first shortest path in Step 3 of the algorithm, connecting the split vertex pair by a zero weight arc (directed towards the source vertex), and replacing any ...
The vertex-connectivity statement of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the size of the minimum vertex cut for x and y (the minimum number of vertices, distinct from x and y, whose removal disconnects x and y) is equal to the maximum number of pairwise internally disjoint paths from x to y.
However, the unit interval [0, 1] and the set of rational numbers Q are not almost disjoint, because their intersection is infinite. This definition extends to any collection of sets. A collection of sets is pairwise almost disjoint or mutually almost disjoint if any two distinct sets in the collection are almost disjoint. Often the prefix ...
By definition of wandering sets and since preserves , would thus contain a countably infinite union of pairwise disjoint sets that have the same -measure as . Since it was assumed μ ( X ) < ∞ {\displaystyle \mu (X)<\infty } , it follows that A {\displaystyle A} is a null set, and so all wandering sets must be null sets.
The optimization version of the problem, maximum set packing, asks for the maximum number of pairwise disjoint sets in the list. It is a maximization problem that can be formulated naturally as an integer linear program , belonging to the class of packing problems .
In mathematics, the disjoint union (or discriminated union) of the sets A and B is the set formed from the elements of A and B labelled (indexed) with the name of the set from which they come. So, an element belonging to both A and B appears twice in the disjoint union, with two different labels.