Search results
Results from the WOW.Com Content Network
If magnetic monopoles were to be discovered, then Gauss's law for magnetism would state the divergence of B would be proportional to the magnetic charge density ρ m, analogous to Gauss's law for electric field. For zero net magnetic charge density (ρ m = 0), the original form of Gauss's magnetism law is the result. The modified formula for ...
Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it. Faraday's law of induction makes use of the magnetic flux Φ B through a
is the magnitude of the applied magnetic field (A/m), is absolute temperature , is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.
Where no such symmetry exists, Gauss's law can be used in its differential form, which states that the divergence of the electric field is proportional to the local density of charge. The law was first [ 1 ] formulated by Joseph-Louis Lagrange in 1773, [ 2 ] followed by Carl Friedrich Gauss in 1835, [ 3 ] both in the context of the attraction ...
The original law of Ampère states that magnetic fields relate to electric current. Maxwell's addition states that magnetic fields also relate to changing electric fields, which Maxwell called displacement current. The integral form states that electric and displacement currents are associated with a proportional magnetic field along any ...
The electric field (E) is the dual of the magnetic field (H). The electric displacement field (D) is the dual of the magnetic flux density (B). Faraday's law of induction is the dual of Ampère's circuital law. Gauss's law for electric field is the dual of Gauss's law for magnetism. The electric potential is the dual of the magnetic potential.