Search results
Results from the WOW.Com Content Network
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Accurate analysis of data using standardized statistical methods in scientific studies is critical to determining the validity of empirical research. Statistical formulas such as regression, uncertainty coefficient , t-test, chi square , and various types of ANOVA (analyses of variance) are fundamental to forming logical, valid conclusions.
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data."
Two main statistical methods are used in data analysis: descriptive statistics, which summarize data from a sample using indexes such as the mean or standard deviation, and inferential statistics, which draw conclusions from data that are subject to random variation (e.g., observational errors, sampling variation). [4]
Quantitative research using statistical methods starts with the collection of data, based on the hypothesis or theory. Usually a big sample of data is collected – this would require verification, validation and recording before the analysis can take place.
Corresponding methods can be used for a paired t-test and multiple comparisons. Similarly, for a regression analysis, an analyst would report the coefficient of determination (R 2) and the model equation instead of the model's p-value. However, proponents of estimation statistics warn against reporting only a few numbers.
A research design typically outlines the theories and models underlying a project; the research question(s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. [1] A strong research design yields valid answers to research questions while weak designs yield unreliable, imprecise or ...
Ordination or gradient analysis, in multivariate analysis, is a method complementary to data clustering, and used mainly in exploratory data analysis (rather than in hypothesis testing). In contrast to cluster analysis, ordination orders quantities in a (usually lower-dimensional) latent space. In the ordination space, quantities that are near ...