enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 2-satisfiability - Wikipedia

    en.wikipedia.org/wiki/2-satisfiability

    Aspvall, Plass & Tarjan (1979) found a simpler linear time procedure for solving 2-satisfiability instances, based on the notion of strongly connected components from graph theory. [4] Two vertices in a directed graph are said to be strongly connected to each other if there is a directed path from one to the other and vice versa.

  3. SAT solver - Wikipedia

    en.wikipedia.org/wiki/SAT_solver

    In computer science and formal methods, a SAT solver is a computer program which aims to solve the Boolean satisfiability problem.On input a formula over Boolean variables, such as "(x or y) and (x or not y)", a SAT solver outputs whether the formula is satisfiable, meaning that there are possible values of x and y which make the formula true, or unsatisfiable, meaning that there are no such ...

  4. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    For example, x 1 is a positive literal, ¬x 2 is a negative literal, and x 1 ∨ ¬x 2 is a clause. The formula ( x 1 ∨ ¬ x 2 ) ∧ (¬ x 1 ∨ x 2 ∨ x 3 ) ∧ ¬ x 1 is in conjunctive normal form; its first and third clauses are Horn clauses, but its second clause is not.

  5. DPLL algorithm - Wikipedia

    en.wikipedia.org/wiki/DPLL_algorithm

    The basic backtracking algorithm runs by choosing a literal, assigning a truth value to it, simplifying the formula and then recursively checking if the simplified formula is satisfiable; if this is the case, the original formula is satisfiable; otherwise, the same recursive check is done assuming the opposite truth value.

  6. Unification (computer science) - Wikipedia

    en.wikipedia.org/wiki/Unification_(computer_science)

    For example, using x,y,z as variables, and taking f to be an uninterpreted function, the singleton equation set { f(1,y) = f(x,2) } is a syntactic first-order unification problem that has the substitution { x ↦ 1, y ↦ 2 } as its only solution. Conventions differ on what values variables may assume and which expressions are considered ...

  7. Constraint logic programming - Wikipedia

    en.wikipedia.org/wiki/Constraint_logic_programming

    Domain-specific constraints may come to the constraint store both from the body of a clauses and from equating a literal with a clause head: for example, if the interpreter rewrites the literal A(X+2) with a clause whose fresh variant head is A(Y/2), the constraint X+2=Y/2 is added to the constraint store. If a variable appears in a real or ...

  8. Literal (computer programming) - Wikipedia

    en.wikipedia.org/wiki/Literal_(computer_programming)

    In computer science, a literal is a textual representation (notation) of a value as it is written in source code. [1] [2] Almost all programming languages have notations for atomic values such as integers, floating-point numbers, and strings, and usually for Booleans and characters; some also have notations for elements of enumerated types and compound values such as arrays, records, and objects.

  9. Integer literal - Wikipedia

    en.wikipedia.org/wiki/Integer_literal

    In computer science, an integer literal is a kind of literal for an integer whose value is directly represented in source code.For example, in the assignment statement x = 1, the string 1 is an integer literal indicating the value 1, while in the statement x = 0x10 the string 0x10 is an integer literal indicating the value 16, which is represented by 10 in hexadecimal (indicated by the 0x prefix).