enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.

  3. Electromagnetic spectrum - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_spectrum

    Gamma rays, at the high-frequency end of the spectrum, have the highest photon energies and the shortest wavelengths—much smaller than an atomic nucleus. Gamma rays, X-rays, and extreme ultraviolet rays are called ionizing radiation because their high photon energy is able to ionize atoms, causing chemical reactions. Longer-wavelength ...

  4. Photon - Wikipedia

    en.wikipedia.org/wiki/Photon

    In some cases, two energy transitions can be coupled so that, as one system absorbs a photon, another nearby system "steals" its energy and re-emits a photon of a different frequency. This is the basis of fluorescence resonance energy transfer , a technique that is used in molecular biology to study the interaction of suitable proteins .

  5. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    Virtual Photon in the initial and the final states is represented by a wavy line (~• and •~). In QED each vertex has three lines attached to it: one bosonic line, one fermionic line with arrow toward the vertex, and one fermionic line with arrow away from the vertex. Vertices can be connected by a bosonic or fermionic propagator. A bosonic ...

  6. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The photon energy of the emitted photons is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated wavelengths, make up an emission spectrum. Each element's ...

  7. Orders of magnitude (energy) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(energy)

    List of orders of magnitude for energy; Factor (joules) SI prefix Value Item 10 −34: 6.626 × 10 −34 J: Energy of a photon with a frequency of 1 hertz. [1]8 × 10 −34 J: Average kinetic energy of translational motion of a molecule at the lowest temperature reached (38 picokelvin [2] as of 2021)

  8. Template:SI photon units - Wikipedia

    en.wikipedia.org/wiki/Template:SI_photon_units

    Template will not display the string "Table X. " in front of the table's title "SI photon units". 1 = <number> The template will display the table number as part of the table header in the following form: "Table <number>. SI photon units.", where <number> is a placeholder for the number (or other table designation) given as parameter.

  9. Photon structure function - Wikipedia

    en.wikipedia.org/wiki/Photon_structure_function

    Photons with high photon energy can transform in quantum mechanics to lepton and quark pairs, the latter fragmented subsequently to jets of hadrons, i.e. protons, pions, etc.At high energies E the lifetime t of such quantum fluctuations of mass M becomes nearly macroscopic: t ≈ E/M 2; this amounts to flight lengths as large as one micrometer for electron pairs in a 100 GeV photon beam, while ...