Search results
Results from the WOW.Com Content Network
Jurin's law, or capillary rise, is the simplest analysis of capillary action—the induced motion of liquids in small channels [1] —and states that the maximum height of a liquid in a capillary tube is inversely proportional to the tube's diameter.
This property is usually used by physicists to estimate the height a liquid will rise in a particular capillary tube, radius known, without the need for an experiment. When the characteristic height of the liquid is sufficiently less than the capillary length, then the effect of hydrostatic pressure due to gravity can be neglected. [9]
The classical probability density is the probability density function that represents the likelihood of finding a particle in the vicinity of a certain location subject to a potential energy in a classical mechanical system.
Full width at half maximum. In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value. In other words, it is the width of a spectrum curve measured between those points on the y-axis which are half the maximum ...
Removing the simplifying assumption of uniform gravitational acceleration provides more accurate results. We find from the formula for radial elliptic trajectories: The time t taken for an object to fall from a height r to a height x, measured from the centers of the two bodies, is given by:
Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example). It is reached when the sum of the drag force ( F d ) and the buoyancy is equal to the downward force of gravity ( F G ) acting on the object.
800-290-4726 more ways to reach us. Sign in. Mail. 24/7 Help. For premium support please call: 800-290-4726 more ways to reach us. Mail. Sign in. Subscriptions; Animals. Business. Entertainment ...
Significant wave height H 1/3, or H s or H sig, as determined in the time domain, directly from the time series of the surface elevation, is defined as the average height of that one-third of the N measured waves having the greatest heights: [5] / = = where H m represents the individual wave heights, sorted into descending order of height as m increases from 1 to N.