Search results
Results from the WOW.Com Content Network
A use case diagram [1] is a graphical depiction of a user's possible interactions with a system. A use case diagram shows various use cases and different types of users the system has and will often be accompanied by other types of diagrams as well. The use cases are represented by either circles or ellipses. The actors are often shown as stick ...
In decision theory, a decision rule is a function which maps an observation to an appropriate action. Decision rules play an important role in the theory of statistics and economics , and are closely related to the concept of a strategy in game theory .
In the same way that a use case describes a series of events and interactions between a user (or other types of Actor) and a system, in order to produce a result of value (goal), a business use case describes the more general interaction between a business system and the users/actors of that system to produce business results of value.
A decision rule that minimizes (,) is called a Bayes rule with respect to (). There may be more than one such Bayes rule. There may be more than one such Bayes rule. If the Bayes risk is infinite for all δ {\displaystyle \delta \,\!} , then no Bayes rule is defined.
Use case analysis is a technique used to identify the requirements of a system (normally associated with software/process design) and the information used to both define processes used and classes (which are a collection of actors and processes) which will be used both in the use case diagram and the overall use case in the development or redesign of a software system or program.
In statistical decision theory, a randomised decision rule or mixed decision rule is a decision rule that associates probabilities with deterministic decision rules. In finite decision problems, randomised decision rules define a risk set which is the convex hull of the risk points of the nonrandomised decision rules.
The Online Shopping System use case diagram is depicting that nine use cases exist for the system. Assuming 2 of these use cases are simple, 3 are average and 4 are complex, the calculation for UUCW is as follows: UUCW = (Total No. of Simple Use Cases x 5) + (Total No. Average Use Cases x 10) + (Total No. Complex Use Cases x 15)
Choice modelling attempts to model the decision process of an individual or segment via revealed preferences or stated preferences made in a particular context or contexts. Typically, it attempts to use discrete choices (A over B; B over A, B & C) in order to infer positions of the items (A, B and C) on some relevant latent scale (typically ...