Search results
Results from the WOW.Com Content Network
In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period. A three-phase system may be arranged in delta (∆) or star (Y) (also denoted as wye in some areas, as symbolically it is similar to the letter 'Y').
Such motors are applied in industry for many applications. A three-phase motor is more compact and less costly than a single-phase motor of the same voltage class and rating, and single-phase AC motors above 10 hp (7.5 kW) are uncommon. Three-phase motors also vibrate less and hence last longer than single-phase motors of the same power used ...
For example; a single-phase motor with 3 north and 3 south poles, having 6 poles per phase, is a 6-pole motor. A three-phase motor with 18 north and 18 south poles, having 6 poles per phase, is also a 6-pole motor. This industry standard method of counting poles results in the same synchronous speed for a given frequency regardless of polarity.
The history of linear electric motors can be traced back at least as far as the 1840s to the work of Charles Wheatstone at King's College in London, [3] but Wheatstone's model was too inefficient to be practical. A feasible linear induction motor is described in US patent 782312 (1905; inventor Alfred Zehden of Frankfurt-am-Main), and is for ...
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.
In vector control, an AC induction or synchronous motor is controlled under all operating conditions like a separately excited DC motor. [21] That is, the AC motor behaves like a DC motor in which the field flux linkage and armature flux linkage created by the respective field and armature (or torque component) currents are orthogonally aligned such that, when torque is controlled, the field ...
Electric motors generate power due to the interaction of the magnetic fields of the stator and the rotor. In synchronous motors, the stator carries 3 phase currents and produces 3 phase rotating magnetic flux (and therefore a rotating magnetic field). The rotor eventually locks in with the rotating magnetic field and rotates along with it.
An industrial electric motor . An electric motor is a machine that converts electrical energy into mechanical energy.Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft.