Search results
Results from the WOW.Com Content Network
In chemistry, the molar absorption coefficient or molar attenuation coefficient (ε) [1] is a measurement of how strongly a chemical species absorbs, and thereby attenuates, light at a given wavelength. It is an intrinsic property of the species.
ε i is the molar attenuation coefficient of the attenuating species i in the material sample; c i is the amount concentration of the attenuating species i in the material sample, by definition of attenuation cross section and molar attenuation coefficient. Attenuation cross section and molar attenuation coefficient are related by
molar absorption coefficient or molar extinction coefficient, also called molar absorptivity, is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see Beer-Lambert law and molar absorptivity for details;
ε is the molar attenuation coefficient of that material, and; c(z) is the molar concentration of that material at z. If c(z) is uniform along the path, the relation becomes =. The use of the term "molar absorptivity" for molar attenuation coefficient is discouraged. [1]
In physics, absorption cross-section is a measure of the probability of an absorption process. More generally, the term cross-section is used in physics to quantify the probability of a certain particle-particle interaction, e.g., scattering , electromagnetic absorption , etc. (Note that light in this context is described as consisting of ...
Extinction coefficient refers to several different measures of the absorption of light in a medium: Attenuation coefficient , sometimes called "extinction coefficient" in meteorology or climatology Mass extinction coefficient , how strongly a substance absorbs light at a given wavelength, per mass density
Mass attenuation coefficients of selected elements for X-ray photons with energies up to 250 keV. The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance).
The spectrum of pure bilirubin is known, so the molar attenuation coefficient ε is known. Measurements of decadic attenuation coefficient μ 10 are made at one wavelength λ that is nearly unique for bilirubin and at a second wavelength in order to correct for possible interferences.