Search results
Results from the WOW.Com Content Network
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]
The saturation current (or scale current), more accurately the reverse saturation current, is the part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region. This current is almost independent of the reverse voltage.
The theory is similar to that of a single probe, except that the current is limited to the ion saturation current for both positive and negative voltages. In particular, if V b i a s {\displaystyle V_{bias}} is the voltage applied between two identical electrodes, the current is given by;
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
Varying the current in the control winding moves the operating point up and down on the saturation curve, controlling the alternating current through the inductor. These are used in variable fluorescent light ballasts, and power control systems. [11] Saturation is also exploited in fluxgate magnetometers and fluxgate compasses.
The effect of reverse saturation current on the I-V curve of a crystalline silicon solar cell are shown in the figure to the right. Physically, reverse saturation current is a measure of the "leakage" of carriers across the p–n junction in reverse bias.
Photocurrent is the electric current through a photosensitive device, such as a photodiode, as the result of exposure to radiant power. The photocurrent may occur as a result of the photoelectric, photoemissive, or photovoltaic effect.
Saturation velocity, the maximum velocity charge carrier in a semiconductor attains in the presence of very high electric fields; Saturation, a region of operation of a transistor § Transistor as a switch; Saturation current, limit of flowing current through a device