Search results
Results from the WOW.Com Content Network
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.
In physics, the fundamental solution, (Green's function), or propagator of the Hamiltonian for the quantum harmonic oscillator is called the Mehler kernel.It provides the fundamental solution [3] φ(x,t) to
The quantum harmonic oscillator (and hence the coherent states) arise in the quantum theory of a wide range of physical systems. [2] For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well (for an early reference, see e.g. Schiff's textbook [3]). The coherent state describes a state ...
Since the matrix elements are the quantum mechanical analogs of Fourier coefficients of the classical orbits, the simplest case is the harmonic oscillator, where the classical position and momentum, X(t) and P(t), are sinusoidal.
Here ¯ is the mean number of excitations in the reservoir damping the oscillator and γ is the decay rate. To model the quantum harmonic oscillator Hamiltonian with frequency of the photons, we can add a further unitary evolution:
The ladder operators of the quantum harmonic oscillator or the "number representation" of second quantization are just special cases of this fact. Ladder operators then become ubiquitous in quantum mechanics from the angular momentum operator, to coherent states and to discrete magnetic translation operators.
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.