Search results
Results from the WOW.Com Content Network
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.
The harmonic oscillator model is very important in physics, because any mass subject to a force in stable equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur widely in nature and are exploited in many manmade devices, such as clocks and radio circuits. They are the source of virtually all sinusoidal ...
The wave function of an initially very localized free particle. In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi, respectively). Wave functions are complex ...
The quantum harmonic oscillator (and hence the coherent states) arise in the quantum theory of a wide range of physical systems. [2] For instance, a coherent state describes the oscillating motion of a particle confined in a quadratic potential well (for an early reference, see e.g. Schiff's textbook [ 3 ] ).
Each of these three rows is a wave function which satisfies the time-dependent Schrödinger equation for a harmonic oscillator. Left: The real part (blue) and imaginary part (red) of the wave function. Right: The probability distribution of finding the particle with this wave function
In physics, the fundamental solution, (Green's function), or propagator of the Hamiltonian for the quantum harmonic oscillator is called the Mehler kernel.It provides the fundamental solution [3] φ(x,t) to
The wave function of the ground state of a particle in a one-dimensional well is a half-period sine wave which goes to zero at the two edges of the well. The energy of the particle is given by: h 2 n 2 8 m L 2 {\displaystyle {\frac {h^{2}n^{2}}{8mL^{2}}}} where h is the Planck constant , m is the mass of the particle, n is the energy state ( n ...
The dynamical symmetry group of the n dimensional quantum harmonic oscillator is the special ... The particles for which the wave function of the system changes ...