Search results
Results from the WOW.Com Content Network
For kinematic viscosity, the SI unit is m^2/s. In engineering, the unit is usually Stoke or centiStoke, with 1 Stoke = 0.0001 m^2/s, and 1 centiStoke = 0.01 Stoke. For liquid, the dynamic viscosity is usually in the range of 0.001 to 1 Pascal-second, or 1 to 1000 centiPoise. The density is usually on the order of 1000 kg/m^3, i.e. that of water.
The SI unit of kinematic viscosity is square meter per second (m 2 /s), whereas the CGS unit for kinematic viscosity is the stokes (St, or cm 2 ·s −1 = 0.0001 m 2 ·s −1), named after Sir George Gabriel Stokes. [29] In U.S. usage, stoke is sometimes used as the singular form.
where U is the oil's kinematic viscosity at 40 °C (104 °F), Y is the oil's kinematic viscosity at 100 °C (212 °F), and L and H are the viscosities at 40 °C for two hypothetical oils of VI 0 and 100 respectively, having the same viscosity at 100 °C as the oil whose VI we are trying to determine.
This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually far more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules.
If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...
A simple and widespread empirical correlation for liquid viscosity is a two-parameter exponential: = / This equation was first proposed in 1913, and is commonly known as the Andrade equation (named after British physicist Edward Andrade). It accurately describes many liquids over a range of temperatures.
A built-in density measurement based on the oscillating U-tube principle allows the determination of kinematic viscosity from the measured dynamic viscosity employing the relation =, where: ν is the kinematic viscosity (mm 2 /s), η is the dynamic viscosity (mPa·s), ρ is the density (g/cm 3).
The Brezina equation. The Reynolds number can be defined for several different situations where a fluid is in relative motion to a surface. [n 1] These definitions generally include the fluid properties of density and viscosity, plus a velocity and a characteristic length or characteristic dimension (L in the above equation). This dimension is ...