Search results
Results from the WOW.Com Content Network
The first step is to set out a full and detailed specification of the format of each data field and what the entries mean. This should take careful account of: most importantly, consultation with the users of the data; any available specification of the system which will use the data to perform the analysis
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Data processing is the collection and manipulation of digital data to produce meaningful information. [1] Data processing is a form of information processing , which is the modification (processing) of information in any manner detectable by an observer.
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data." [3]
Neither the data collection, data preparation, nor result interpretation and reporting is part of the data mining step, although they do belong to the overall KDD process as additional steps. The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the ...
Data analysis focuses on the process of examining past data through business understanding, data understanding, data preparation, modeling and evaluation, and deployment. [8] It is a subset of data analytics, which takes multiple data analysis processes to focus on why an event happened and what may happen in the future based on the previous data.
Data collection and validation consist of four steps when it involves taking a census and seven steps when it involves sampling. [3] A formal data collection process is necessary, as it ensures that the data gathered are both defined and accurate. This way, subsequent decisions based on arguments embodied in the findings are made using valid ...