Search results
Results from the WOW.Com Content Network
The relational algebra uses set union, set difference, and Cartesian product from set theory, and adds additional constraints to these operators to create new ones.. For set union and set difference, the two relations involved must be union-compatible—that is, the two relations must have the same set of attributes.
A relation algebra (L, ∧, ∨, −, 0, 1, •, I, ˘) is an algebraic structure equipped with the Boolean operations of conjunction x∧y, disjunction x∨y, and negation x −, the Boolean constants 0 and 1, the relational operations of composition x•y and converse x˘, and the relational constant I, such that these operations and constants satisfy certain equations constituting an ...
In high-level computer programming and digital electronics, logical conjunction is commonly represented by an infix operator, usually as a keyword such as "AND", an algebraic multiplication, or the ampersand symbol & (sometimes doubled as in &&). Many languages also provide short-circuit control structures corresponding to logical conjunction.
Since relations are sets, they can be manipulated using set operations, including union, intersection, and complementation, leading to the algebra of sets. Furthermore, the calculus of relations includes the operations of taking the converse and composing relations. [7] [8] [9]
propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise. may mean the same as (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).
A signature with no function symbols is called a relational signature, and a signature with no relation symbols is called an algebraic signature. [1] A finite signature is a signature such that S func {\displaystyle S_{\operatorname {func} }} and S rel {\displaystyle S_{\operatorname {rel} }} are finite .
Conjunction: the symbol appeared in Heyting in 1930 [3] (compare to Peano's use of the set-theoretic notation of intersection [7]); the symbol & appeared at least in Schönfinkel in 1924; [8] the symbol comes from Boole's interpretation of logic as an elementary algebra. Disjunction: the symbol appeared in Russell in 1908 [6] (compare to Peano ...
Another form of composition of relations, which applies to general -place relations for , is the join operation of relational algebra. The usual composition of two binary relations as defined here can be obtained by taking their join, leading to a ternary relation, followed by a projection that removes the middle component.