enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratic form - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form

    Using homogeneous coordinates, a non-zero quadratic form in n variables defines an (n − 2)-dimensional quadric in the (n − 1)-dimensional projective space. This is a basic construction in projective geometry. In this way one may visualize 3-dimensional real quadratic forms as conic sections.

  3. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    By definition, a quadric X of dimension n over a field k is the subspace of + defined by q = 0, where q is a nonzero homogeneous polynomial of degree 2 over k in variables , …, +. (A homogeneous polynomial is also called a form, and so q may be called a quadratic form.)

  4. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.

  5. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    The coefficient a is the same value in all three forms. To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one ...

  6. Second fundamental form - Wikipedia

    en.wikipedia.org/wiki/Second_fundamental_form

    and the second fundamental form at the origin in the coordinates (x,y) is the quadratic form L d x 2 + 2 M d x d y + N d y 2 . {\displaystyle L\,dx^{2}+2M\,dx\,dy+N\,dy^{2}\,.} For a smooth point P on S , one can choose the coordinate system so that the plane z = 0 is tangent to S at P , and define the second fundamental form in the same way.

  7. Definite quadratic form - Wikipedia

    en.wikipedia.org/wiki/Definite_quadratic_form

    In mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite .

  8. Dying To Be Free - The Huffington Post

    projects.huffingtonpost.com/dying-to-be-free...

    A yearlong HuffPost investigation into the heroin treatment industry.

  9. Clifford algebra - Wikipedia

    en.wikipedia.org/wiki/Clifford_algebra

    A Clifford algebra is a unital associative algebra that contains and is generated by a vector space V over a field K, where V is equipped with a quadratic form Q : V → K.The Clifford algebra Cl(V, Q) is the "freest" unital associative algebra generated by V subject to the condition [c] = , where the product on the left is that of the algebra, and the 1 on the right is the algebra's ...