enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Altitude (triangle) - Wikipedia

    en.wikipedia.org/wiki/Altitude_(triangle)

    The process of drawing the altitude from a vertex to the foot is known as dropping the altitude at that vertex. It is a special case of orthogonal projection. Altitudes can be used in the computation of the area of a triangle: one-half of the product of an altitude's length and its base's length (symbol b) equals the triangle's area: A = h b /2 ...

  3. Geometric mean theorem - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean_theorem

    Dissecting the right triangle along its altitude h yields two similar triangles, which can be augmented and arranged in two alternative ways into a larger right triangle with perpendicular sides of lengths p + h and q + h. One such arrangement requires a square of area h 2 to complete it, the other a rectangle of area pq. Since both ...

  4. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    An altitude of a triangle is a straight line through a vertex and perpendicular to the opposite side. This opposite side is called the base of the altitude, and the point where the altitude intersects the base (or its extension) is called the foot of the altitude. [23] The length of the altitude is the distance between the base and the vertex.

  5. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The best known and simplest formula is = /, where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular from the vertex opposite the base onto the line containing the base.

  6. Viviani's theorem - Wikipedia

    en.wikipedia.org/wiki/Viviani's_theorem

    For any interior point P, the sum of the lengths of the perpendiculars s + t + u equals the height of the equilateral triangle.. Viviani's theorem, named after Vincenzo Viviani, states that the sum of the shortest distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. [1]

  7. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    The altitude to the hypotenuse is the geometric mean (mean proportional) of the two segments of the hypotenuse. [2]: 243 Each leg of the triangle is the mean proportional of the hypotenuse and the segment of the hypotenuse that is adjacent to the leg. In equations, =, (this is sometimes known as the right triangle altitude theorem)

  8. Today's Wordle Hint, Answer for #1259 on Friday, November 29 ...

    www.aol.com/lifestyle/todays-wordle-hint-answer...

    If you’re stuck on today’s Wordle answer, we’re here to help—but beware of spoilers for Wordle 1259 ahead. Let's start with a few hints.

  9. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 5 – An acute triangle with perpendicular. The altitude through vertex C is a segment perpendicular to side c. The distance from the foot of the altitude to vertex A plus the distance from the foot of the altitude to vertex B is equal to the length of side c (see Fig. 5).