Search results
Results from the WOW.Com Content Network
Acetone (2-propanone or dimethyl ketone) is an organic compound with the formula (CH 3) 2 CO. [22] It is the simplest and smallest ketone (R−C(=O)−R').It is a colorless, highly volatile, and flammable liquid with a characteristic pungent odour, very reminiscent of the smell of pear drops.
Most of the worldwide production of phenol and acetone is now based on this method. In 2022, nearly 10.8 million tonnes of phenol was produced by the cumene process. [4] In order for this process to be economical, there must also be demand for the acetone by-product as well as the phenol. [5]
Acetone peroxide (/ æ s ə ˈ t ə ʊ n p ɛr ˈ ɒ k s aɪ d / ⓘ also called APEX and mother of Satan [3] [4]) is an organic peroxide and a primary explosive. It is produced by the reaction of acetone and hydrogen peroxide to yield a mixture of linear monomer and cyclic dimer, trimer, and tetramer forms. The monomer is dimethyldioxirane.
A second synthesis involves the base-catalyzed condensation (e.g., by sodium ethoxide CH 3 CH 2 O − Na +) of acetone and ethyl acetate, followed by acidification of the sodium acetylacetonate (e.g., by hydrogen chloride HCl): [11]
The Baeyer–Drewsen indigo synthesis (1882) is an organic reaction in which indigo is prepared from 2-nitrobenzaldehyde and acetone [1] [2] The reaction was developed by von Baeyer and Viggo Drewsen in 1880 to produce the first synthetic indigo at laboratory scale. This procedure is not used at industrial scale.
Acetoacetic ester synthesis is a chemical reaction where ethyl acetoacetate is alkylated at the α-carbon to both carbonyl groups and then converted into a ketone, or more specifically an α-substituted acetone. This is very similar to malonic ester synthesis. Acetoacetic ester synthesis equation
Acetophenone is formed as a byproduct of the cumene process, the industrial route for the synthesis of phenol and acetone.In the Hock rearrangement of isopropylbenzene hydroperoxide, migration of a methyl group rather than the phenyl group gives acetophenone and methanol as a result of an alternate rearrangement of the intermediate:
Ketogenesis pathway. The three ketone bodies (acetoacetate, acetone, and beta-hydroxy-butyrate) are marked within orange boxes. Ketogenesis is the biochemical process through which organisms produce ketone bodies by breaking down fatty acids and ketogenic amino acids.