enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. [ 1 ] [ 2 ] [ 3 ] The Doppler effect is named after the physicist Christian Doppler , who described the phenomenon in 1842.

  3. Relativistic Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Relativistic_Doppler_effect

    The relativistic Doppler effect is the change in frequency, wavelength and amplitude [1] of light, caused by the relative motion of the source and the observer (as in the classical Doppler effect, first proposed by Christian Doppler in 1842 [2]), when taking into account effects described by the special theory of relativity.

  4. Ives–Stilwell experiment - Wikipedia

    en.wikipedia.org/wiki/Ives–Stilwell_experiment

    Initial attempts to measure the second order transverse Doppler effect in canal rays completely failed. For example, Stark's 1906 measurements showed systematic errors ten times the predicted effect. [5] The maximum speed achievable in early gas-discharge tubes was about 0.005 c, which implied a transverse Doppler shift of only about 1.25×10 ...

  5. Doppler broadening - Wikipedia

    en.wikipedia.org/wiki/Doppler_broadening

    An example of a Doppler broadened line profile. The solid line represents an un-broadened emission profile, and the dashed line represents a broadened emission profile. In atomic physics, Doppler broadening is broadening of spectral lines due to the Doppler effect caused by a distribution of velocities of atoms or molecules.

  6. Gravitational redshift - Wikipedia

    en.wikipedia.org/wiki/Gravitational_redshift

    Therefore, in a laboratory experiment at the surface of the Earth, all gravitational effects should be equivalent to the effects that would have been observed if the laboratory had been accelerating through outer space at g. One consequence is a gravitational Doppler effect. If a light pulse is emitted at the floor of the laboratory, then a ...

  7. Black-body radiation - Wikipedia

    en.wikipedia.org/wiki/Black-body_radiation

    The relativistic Doppler effect causes a shift in the frequency f of light originating from a source that is moving in relation to the observer, so that the wave is observed to have frequency f': ′ = ⁡ /, where v is the velocity of the source in the observer's rest frame, θ is the angle between the velocity vector and the observer-source ...

  8. Mössbauer effect - Wikipedia

    en.wikipedia.org/wiki/Mössbauer_effect

    In the Mössbauer effect, a narrow resonance for nuclear gamma emission and absorption results from the momentum of recoil being delivered to a surrounding crystal lattice rather than to the emitting or absorbing nucleus alone. When this occurs, no gamma energy is lost to the kinetic energy of recoiling nuclei at either the emitting or ...

  9. Relativistic beaming - Wikipedia

    en.wikipedia.org/wiki/Relativistic_beaming

    Only a single jet is visible in M87. Two jets are visible in 3C 31.. In physics, relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of light.