Search results
Results from the WOW.Com Content Network
In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus .
Examples of functions that are not entire include the square root, the logarithm, the trigonometric function tangent, and its inverse, arctan. For these functions the Taylor series do not converge if x is far from b. That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor ...
A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.
The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .
for the infinite series. Note that if the function () is increasing, then the function () is decreasing and the above theorem applies.. Many textbooks require the function to be positive, [1] [2] [3] but this condition is not really necessary, since when is negative and decreasing both = and () diverge.
The notes that Marx took have been collected into four independent treatises: On the Concept of the Derived Function, On the Differential, On the History of Differential Calculus, and Taylor's Theorem, MacLaurin's Theorem, and Lagrange's Theory of Derived Functions, along with several notes, additional drafts, and supplements to these four ...
In mathematics, the Bernoulli numbers B n are a sequence of rational numbers which occur frequently in analysis.The Bernoulli numbers appear in (and can be defined by) the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain ...
Maclaurin used Taylor series to characterize maxima, minima, and points of inflection for infinitely differentiable functions in his Treatise of Fluxions. Maclaurin attributed the series to Brook Taylor, though the series was known before to Newton and Gregory, and in special cases to Madhava of Sangamagrama in fourteenth century India. [6]