Search results
Results from the WOW.Com Content Network
The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis. For a point-like mass, the moment of inertia about some axis is given by , where is the distance of the point from the axis, and is the mass. For an extended rigid body, the moment of inertia is just the sum of all ...
MinutePhysics is an educational YouTube channel created by Henry Reich in 2011. The channel's videos use whiteboard animation to explain physics-related topics. Early videos on the channel were approximately one minute long. [2] As of February 2025, the channel has over 5.8 million subscribers.
The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia or sometimes as the angular mass.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.
PBS is expanding its presence in the linear, free streaming channel business. The public broadcaster has sealed a deal with Amazon to stream its PBS Kids channel, as well as 150 local PBS stations ...
Inertial mass is affected by the global distribution of matter. If you take away all matter, there is no more space. Ω = def 4 π ρ G T 2 {\displaystyle \Omega \ {\stackrel {\text{def}}{=}}\ 4\pi \rho GT^{2}} is a definite number, of order unity, where ρ {\displaystyle \rho } is the mean density of matter in the universe, and T ...
F = total force acting on the center of mass m = mass of the body I 3 = the 3×3 identity matrix a cm = acceleration of the center of mass v cm = velocity of the center of mass τ = total torque acting about the center of mass I cm = moment of inertia about the center of mass ω = angular velocity of the body α = angular acceleration of the body