Search results
Results from the WOW.Com Content Network
The ICRP 2007 standard values for relative effectiveness are given below. The higher radiation weighting factor for a type of radiation, the more damaging it is, and this is incorporated into the calculation to convert from gray to sievert units. The radiation weighting factor for neutrons has been revised over time and remains controversial.
W R is the radiation weighting factor defined by regulation. Thus for example, an absorbed dose of 1 Gy by alpha particles will lead to an equivalent dose of 20 Sv, and an equivalent dose of radiation is estimated to have the same biological effect as an equal amount of absorbed dose of gamma rays, which is given a weighting factor of 1.
W R is the radiation weighting factor defined by regulation. Thus for example, an absorbed dose of 1 Gy by alpha particles will lead to an equivalent dose of 20 Sv. The radiation weighting factor for neutrons has been revised over time and remains controversial. This may seem to be a paradox.
The ICRP tissue weighting factors are given in the accompanying table, and the equations used to calculate from either absorbed dose or equivalent dose are also given. Some tissues like bone marrow are particularly sensitive to radiation, so they are given a weighting factor that is disproportionately large relative to the fraction of body mass ...
Absorbed dose, total ionizing dose (total energy of radiation transferred to unit mass) D can only be found experimentally N/A Gy = 1 J/kg (Gray) [L] 2 [T] −2: Equivalent dose: H = Q = radiation quality factor (dimensionless) Sv = J kg −1 (Sievert) [L] 2 [T] −2: Effective dose: E =
The adoption of the gray by the 15th General Conference on Weights and Measures as the unit of measure of the absorption of ionizing radiation, specific energy absorption, and of kerma in 1975 [17] was the culmination of over half a century of work, both in the understanding of the nature of ionizing radiation and in the creation of coherent ...
Neutron radiation is a form of ionizing radiation that presents as free neutrons. Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides —which, in turn, may trigger further neutron radiation.
The absorbed dose required to produce a certain biological effect varies between different types of radiation, such as photons, neutrons or alpha particles. This is taken into account by the equivalent dose (H), which is defined as the mean dose to organ T by radiation type R (D T,R), multiplied by a weighting factor W R.