enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Betz's law - Wikipedia

    en.wikipedia.org/wiki/Betz's_law

    The power coefficient [9] C P (= P/P wind) is the dimensionless ratio of the extractable power P to the kinetic power P wind available in the undistributed stream. [ citation needed ] It has a maximum value C P max = 16/27 = 0.593 (or 59.3%; however, coefficients of performance are usually expressed as a decimal, not a percentage).

  3. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.

  4. Tip-speed ratio - Wikipedia

    en.wikipedia.org/wiki/Tip-speed_ratio

    The power coefficient, , expresses what fraction of the power in the wind is being extracted by the wind turbine. It is generally assumed to be a function of both tip-speed ratio and pitch angle. Below is a plot of the variation of the power coefficient with variations in the tip-speed ratio when the pitch is held constant:

  5. Wind-turbine aerodynamics - Wikipedia

    en.wikipedia.org/wiki/Wind-turbine_aerodynamics

    The direction of the drag force is parallel to the relative wind. Typically, the wind turbine parts are moving, altering the flow around the part. An example of relative wind is the wind one would feel cycling on a calm day. To extract power, the turbine part must move in the direction of the net force.

  6. Capacity factor - Wikipedia

    en.wikipedia.org/wiki/Capacity_factor

    The net capacity factor is the unitless ratio of actual electrical energy output over a given period of time to the theoretical maximum electrical energy output over that period. [1] The theoretical maximum energy output of a given installation is defined as that due to its continuous operation at full nameplate capacity over the relevant period.

  7. Energy conversion efficiency - Wikipedia

    en.wikipedia.org/wiki/Energy_conversion_efficiency

    Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical , electric power , mechanical work , light (radiation), or heat .

  8. Wind turbine - Wikipedia

    en.wikipedia.org/wiki/Wind_turbine

    Energy harnessed by wind turbines is variable, and is not a "dispatchable" source of power; its availability is based on whether the wind is blowing, not whether electricity is needed. Turbines can be placed on ridges or bluffs to maximize the access of wind they have, but this also limits the locations where they can be placed. [116]

  9. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power in mechanical systems is the combination of forces and movement. In particular, power is the product of a force on an object and the object's velocity, or the product of a torque on a shaft and the shaft's angular velocity. Mechanical power is also described as the time derivative of work.