Search results
Results from the WOW.Com Content Network
When light traveling in a dense medium hits a boundary at a steep angle, the light will be completely reflected. This effect, called total internal reflection, is used in optical fibers to confine light in the core. Light travels along the fiber bouncing back and forth off of the boundary.
The general definition of opalescence is a milky iridescence displayed by an opal, which describes the visual effect of precious opal very well, and opalescence is commonly used in lay terms as a synonym for iridescence. [4]
In a modern, scientific sense, the phenomena can usually be classified by the three different mechanisms that produce the light, [further explanation needed] and the typical timescales during which those mechanisms emit light. Whereas fluorescent materials stop emitting light within nanoseconds (billionths of a second) after the excitation ...
The first nonlinear optical effect to be predicted was two-photon absorption, by Maria Goeppert Mayer for her PhD in 1931, but it remained an unexplored theoretical curiosity until 1961 and the almost simultaneous observation of two-photon absorption at Bell Labs [4] and the discovery of second-harmonic generation by Peter Franken et al. at University of Michigan, both shortly after the ...
One common example is the rainbow, when light from the Sun is reflected and refracted by water droplets. Some phenomena, such as the green ray, are so rare they are sometimes thought to be mythical. [2] Others, such as Fata Morganas, are commonplace in favored locations. Other phenomena are simply interesting aspects of optics, or
In condensed matter physics, scintillation (/ ˈ s ɪ n t ɪ l eɪ ʃ ən / SIN-til-ay-shun) is the physical process where a material, called a scintillator, emits ultraviolet or visible light under excitation from high energy photons (X-rays or gamma rays) or energetic particles (such as electrons, alpha particles, neutrons, or ions).
The effect of adding the quarter-wave plate after the source-side polarizer is that we get circularly polarized light passing through the sample. The analyzer-side quarter-wave plate converts the circular polarization state back to linear before the light passes through the analyzer.
Iridescence is caused by wave interference of light in microstructures or thin films. Examples of iridescence include soap bubbles, feathers, butterfly wings and seashell nacre, and minerals such as opal. Pearlescence is a related effect where some or most of the reflected light is white. The term pearlescent is used to describe certain paint ...