Search results
Results from the WOW.Com Content Network
Glutamic acid is produced on the largest scale of any amino acid, with an estimated annual production of about 1.5 million tons in 2006. [18] Chemical synthesis was supplanted by the aerobic fermentation of sugars and ammonia in the 1950s, with the organism Corynebacterium glutamicum (also known as Brevibacterium flavum ) being the most widely ...
The family of glutamate transporters is composed of two primary subclasses: the excitatory amino acid transporter (EAAT) family and vesicular glutamate transporter (VGLUT) family. In the brain, EAATs remove glutamate from the synaptic cleft and extrasynaptic sites via glutamate reuptake into glial cells and neurons , while VGLUTs move glutamate ...
Glutamine ball and stick model spinning. Glutamine (symbol Gln or Q) [3] is an α-amino acid that is used in the biosynthesis of proteins.Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide.
Glutamine is converted to glutamic acid or pyroglutamic acid (5-oxoproline). In a protein or peptide, these reactions are important because they may alter its structure, stability or function and may lead to protein degradation. The net chemical change is the addition of a water group and removal of an ammonia group, which corresponds to a +1 ...
The four amino acids bind to the site by their common atoms, “the main chain” of amino acids. [5] Glutamate is another product of glutamine metabolism; however, glutamate is a substrate for GS inhibiting it to act as a regulator to GS.2 Each inhibitor can reduce the activity of the enzyme; once all final glutamine metabolites are bound to ...
Glutamate is a very major constituent of a wide variety of proteins; consequently it is one of the most abundant amino acids in the human body. [1] Glutamate is formally classified as a non-essential amino acid, because it can be synthesized (in sufficient quantities for health) from α-ketoglutaric acid, which is produced as part of the citric acid cycle by a series of reactions whose ...
The fatty acids can be used for phospholipid synthesis or can be released. [15] Fatty acids represent an effective storage vehicle for hydrogen. Therefore, the release of fatty acids is an effective way to get rid of cytosolic hydrogen produced within the glycolytic glyceraldehyde 3-phosphate dehydrogenase (GAPDH; EC 1.2.1.9) reaction. [16]
The structure of glutaminase has been determined using X-ray diffraction to a resolution of up to 1.73 Å. There are 2 chains containing 305 residues that make up the length of this dimeric protein. On each strand, 23% of the amino acid content, or 71 residues, are found in the 8 helices.