enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_analysis

    Regression analysis, in the context of sensitivity analysis, involves fitting a linear regression to the model response and using standardized regression coefficients as direct measures of sensitivity. The regression is required to be linear with respect to the data (i.e. a hyperplane, hence with no quadratic terms, etc., as regressors) because ...

  3. Morris method - Wikipedia

    en.wikipedia.org/wiki/Morris_method

    In applied statistics, the Morris method for global sensitivity analysis is a so-called one-factor-at-a-time method, meaning that in each run only one input parameter is given a new value. It facilitates a global sensitivity analysis by making a number r {\displaystyle r} of local changes at different points x ( 1 → r ) {\displaystyle x(1 ...

  4. Variance-based sensitivity analysis - Wikipedia

    en.wikipedia.org/wiki/Variance-based_sensitivity...

    Variance-based sensitivity analysis (often referred to as the Sobol’ method or Sobol’ indices, after Ilya M. Sobol’) is a form of global sensitivity analysis. [1] [2] Working within a probabilistic framework, it decomposes the variance of the output of the model or system into fractions which can be attributed to inputs or sets of inputs.

  5. Simulation decomposition - Wikipedia

    en.wikipedia.org/wiki/Simulation_decomposition

    One can use sensitivity indices (see variance-based sensitivity analysis) to define the most influential variables for decomposition or choose them manually according to the decision-problem context (for example, only those input variables that the decision-maker can act upon). Two to three input variables, ordered by decreasing value of their ...

  6. Sensitivity analysis studies the relation between the uncertainty in a model-based the inference [clarify] and the uncertainties in the model assumptions. [ 1 ] [ 2 ] Sensitivity analysis can play an important role in epidemiology, for example in assessing the influence of the unmeasured confounding on the causal conclusions of a study. [ 3 ]

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    If the goal is to explain variation in the response variable that can be attributed to variation in the explanatory variables, linear regression analysis can be applied to quantify the strength of the relationship between the response and the explanatory variables, and in particular to determine whether some explanatory variables may have no ...

  8. Applications of sensitivity analysis to model calibration

    en.wikipedia.org/wiki/Applications_of...

    That is, one can seek to understand what observations (measurements of dependent variables) are most and least important to model inputs (parameters representing system characteristics or excitation), what model inputs are most and least important to predictions or forecasts, and what observations are most and least important to the predictions ...

  9. Robust Bayesian analysis - Wikipedia

    en.wikipedia.org/wiki/Robust_Bayesian_analysis

    For example, some criticize methods that must assume the analyst is "omniscient" about certain facts such as model structure, distribution shapes and parameters. Because such facts are themselves potentially in doubt, an approach that does not rely too sensitively on the analysts getting the details exactly right would be preferred.