Search results
Results from the WOW.Com Content Network
The Collection interface is a subinterface of java.lang.Iterable, so any Collection may be the target of a for-each statement. (The Iterable interface provides the iterator() method used by for-each statements.) All Collections have an java.util.Iterator that goes through all of the elements in the Collection. Collection is generic.
Introduced in the Java JDK 1.2 release, the java.util.Iterator interface allows the iteration of container classes. Each Iterator provides a next() and hasNext() method, [18]: 294–295 and may optionally support a remove() [18]: 262, 266 method. Iterators are created by the corresponding container class, typically by a method named iterator().
Java has had a standard interface for implementing iterators since its early days, and since Java 5, the "foreach" construction makes it easy to loop over objects that provide the java.lang.Iterable interface. (The Java collections framework and other collections frameworks, typically provide iterators for all collections.)
It implicitly calls the IntoIterator::into_iter method on the expression, and uses the resulting value, which must implement the Iterator trait. If the expression is itself an iterator, it is used directly by the for loop through an implementation of IntoIterator for all Iterators that returns the iterator unchanged.
In object-oriented programming, the iterator pattern is a design pattern in which an iterator is used to traverse a container and access the container's elements. The iterator pattern decouples algorithms from containers; in some cases, algorithms are necessarily container-specific and thus cannot be decoupled.
The Java programming language's Java Collections Framework version 1.5 and later defines and implements the original regular single-threaded Maps, and also new thread-safe Maps implementing the java.util.concurrent.ConcurrentMap interface among other concurrent interfaces. [1]
In Java associative arrays are implemented as "maps", which are part of the Java collections framework. Since J2SE 5.0 and the introduction of generics into Java, collections can have a type specified; for example, an associative array that maps strings to strings might be specified as follows:
The Java collections framework supports generics to specify the type of objects stored in a collection instance. In 1998, Gilad Bracha, Martin Odersky, David Stoutamire and Philip Wadler created Generic Java, an extension to the Java language to support generic types. [4] Generic Java was incorporated in Java with the addition of wildcards.