Search results
Results from the WOW.Com Content Network
Quantitative Data Analysis with IBM SPSS 17, 18 and 19: A Guide for Social Scientists. New York: Routledge. ISBN 978-0-415-57918-6. Levesque, R. (2007). SPSS Programming and Data Management: A Guide for SPSS and SAS Users (4th ed.). Chicago, Illinois: SPSS Inc. ISBN 978-1-56827-390-7. SPSS 15.0 Command Syntax Reference. Chicago, Illinois: SPSS ...
In the book "SPSS For Dummies", the author discusses PSPP under the heading of "Ten Useful Things You Can Find on the Internet". [4] Another review of free to use statistical software also finds that the statistical results from PSPP match statistical results for SAS, for frequencies, means, correlation and regression.
IBM SPSS Modeler is a data mining and text analytics software application from IBM. It is used to build predictive models and conduct other analytic tasks. It has a visual interface which allows users to leverage statistical and data mining algorithms without programming.
BASIC (Beginners' All-purpose Symbolic Instruction Code) [1] is a family of general-purpose, high-level programming languages designed for ease of use. The original version was created by John G. Kemeny and Thomas E. Kurtz at Dartmouth College in 1963. They wanted to enable students in non-scientific fields to use computers.
The generalized additive model for location, scale and shape (GAMLSS) is a semiparametric regression model in which a parametric statistical distribution is assumed for the response (target) variable but the parameters of this distribution can vary according to explanatory variables.
Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression; [1] instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
Gibbs sampling is named after the physicist Josiah Willard Gibbs, in reference to an analogy between the sampling algorithm and statistical physics.The algorithm was described by brothers Stuart and Donald Geman in 1984, some eight decades after the death of Gibbs, [1] and became popularized in the statistics community for calculating marginal probability distribution, especially the posterior ...