Search results
Results from the WOW.Com Content Network
The y arc elasticity of x is defined as: , = % % where the percentage change in going from point 1 to point 2 is usually calculated relative to the midpoint: % = (+) /; % = (+) /. The use of the midpoint arc elasticity formula (with the midpoint used for the base of the change, rather than the initial point (x 1, y 1) which is used in almost all other contexts for calculating percentages) was ...
In economics, the price elasticity of demand refers to the elasticity of a demand function Q(P), and can be expressed as (dQ/dP)/(Q(P)/P) or the ratio of the value of the marginal function (dQ/dP) to the value of the average function (Q(P)/P). This relationship provides an easy way of determining whether a demand curve is elastic or inelastic ...
Loosely speaking, this gives an "average" elasticity for the section of the actual demand curve—i.e., the arc of the curve—between the two points. As a result, this measure is known as the arc elasticity, in this case with respect to the price of the good. The arc elasticity is defined mathematically as: [16] [17] [18]
[3] [4] Let the bounded wedge have two traction free surfaces and a third surface in the form of an arc of a circle with radius . Along the arc of the circle, the unit outward normal is = where the basis vectors are (,). The tractions on the arc are
The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity. = The essence of elasticity is reversibility. Forces applied to an elastic material transfer energy into the material which, upon ...
An example in microeconomics is the constant elasticity demand function, in which p is the price of a product and D(p) is the resulting quantity demanded by consumers.For most goods the elasticity r (the responsiveness of quantity demanded to price) is negative, so it can be convenient to write the constant elasticity demand function with a negative sign on the exponent, in order for the ...
Castigliano's method for calculating displacements is an application of his second theorem, which states: If the strain energy of a linearly elastic structure can be expressed as a function of generalised force Q i then the partial derivative of the strain energy with respect to generalised force gives the generalised displacement q i in the direction of Q i.
With a constant pressure, the voltage needed to cause an arc reduced as the gap size was reduced but only to a point. As the gap was reduced further, the voltage required to cause an arc began to rise and again exceeded its original value. For a given gas, the voltage is a function only of the product of the pressure and gap length.