Search results
Results from the WOW.Com Content Network
Basic ways that neurons can interact with each other when converting input to output. Summation, which includes both spatial summation and temporal summation, is the process that determines whether or not an action potential will be generated by the combined effects of excitatory and inhibitory signals, both from multiple simultaneous inputs (spatial summation), and from repeated inputs ...
Temporal summation: When a single synapse inputs that are close together in time, their potentials are also added together. Thus, if a neuron receives an excitatory postsynaptic potential, and then the presynaptic neuron fires again, creating another EPSP, then the membrane of the postsynaptic cell is depolarized by the total sum of all the ...
The two ways that synaptic potentials can add up to potentially form an action potential are spatial summation and temporal summation. [5] Spatial summation refers to several excitatory stimuli from different synapses converging on the same postsynaptic neuron at the same time to reach the threshold needed to reach an action potential. Temporal ...
Neurotransmission (Latin: transmissio "passage, crossing" from transmittere "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), and bind to and react with the receptors on the dendrites of another neuron (the postsynaptic neuron) a ...
We do not know the upper limit of phase locking in humans but current, indirect, estimates suggest it is about 4–5 kHz. [70] Phase locking is a direct consequence of the transduction process with an increase in probability of transduction channel opening occurring with a stretching of the stereocilia and decrease in channel opening occurring ...
Visual temporal integration is a perceptual process of integrating a continuous and rapid stream of information into discrete perceptual episodes or ‘events’. Arguably, integrating over small temporal windows, as opposed to sampling ‘snapshots’, allows the brain to evaluate visual information more reliably. [ 1 ]
The amplitude and the phase of the waveform is transformed into a vector where the phase is translated to the angle between the phasor vector and X-axis and the amplitude is translated to vector length or magnitude. In this concept the representation and the analysis becomes very simple and the addition of two wave forms is realized by their ...
The phase modulation (φ(t), not shown) is a non-linearly increasing function from 0 to π /2 over the interval 0 < t < 16. The two amplitude-modulated components are known as the in-phase component (I, thin blue, decreasing) and the quadrature component (Q, thin red, increasing).