enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mean value theorem (divided differences) - Wikipedia

    en.wikipedia.org/wiki/Mean_value_theorem...

    For any n + 1 pairwise distinct points x ... , x n in the domain of an n-times differentiable ... where the nth derivative of f equals n ! times the nth divided ...

  3. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    the partial differential of y with respect to any one of the variables x 1 is the principal part of the change in y resulting from a change dx 1 in that one variable. The partial differential is therefore involving the partial derivative of y with respect to x 1.

  4. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    It is differentiable everywhere except at the point x = 0, where it makes a sharp turn as it crosses the y-axis. A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must ...

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivative of the function at a point is the slope of the line tangent to the curve at the point. The slope of the constant function is 0, because the tangent line to the constant function is horizontal and its angle is 0.

  6. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  7. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    The C 0 function f (x) = x for x ≥ 0 and 0 otherwise. The function g (x) = x 2 sin(1/ x) for x > 0. The function : with () = ⁡ for and () = is differentiable. However, this function is not continuously differentiable.

  8. Strict differentiability - Wikipedia

    en.wikipedia.org/wiki/Strict_differentiability

    The simplest setting in which strict differentiability can be considered, is that of a real-valued function defined on an interval I of the real line. The function f:I → R is said strictly differentiable in a point a ∈ I if

  9. Time-scale calculus - Wikipedia

    en.wikipedia.org/wiki/Time-scale_calculus

    In mathematics, time-scale calculus is a unification of the theory of difference equations with that of differential equations, unifying integral and differential calculus with the calculus of finite differences, offering a formalism for studying hybrid systems.