enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Instance normalization (InstanceNorm), or contrast normalization, is a technique first developed for neural style transfer, and is also only used for CNNs. [26] It can be understood as the LayerNorm for CNN applied once per channel, or equivalently, as group normalization where each group consists of a single channel:

  3. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging. In more complicated cases, normalization may refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment.

  4. Database normalization - Wikipedia

    en.wikipedia.org/wiki/Database_normalization

    Database normalization is the process of structuring a relational database in accordance with a series of so-called normal forms in order to reduce data redundancy and improve data integrity. It was first proposed by British computer scientist Edgar F. Codd as part of his relational model .

  5. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Without normalization, the clusters were arranged along the x-axis, since it is the axis with most of variation. After normalization, the clusters are recovered as expected. In machine learning, we can handle various types of data, e.g. audio signals and pixel values for image data, and this data can include multiple dimensions. Feature ...

  6. Canonicalization - Wikipedia

    en.wikipedia.org/wiki/Canonicalization

    In English, for example, run, runs, ran, and running are forms of the same lexeme, so we can select one of them; ex. run, to represent all the forms. Lexical databases such as Unitex use this kind of representation. Lemmatisation is the process of converting a word to its canonical form.

  7. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    A second kind of remedies is based on approximating the softmax (during training) with modified loss functions that avoid the calculation of the full normalization factor. [9] These include methods that restrict the normalization sum to a sample of outcomes (e.g. Importance Sampling, Target Sampling). [9] [10]

  8. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    Ideally, the normalization would be conducted over the entire training set, but to use this step jointly with stochastic optimization methods, it is impractical to use the global information. Thus, normalization is restrained to each mini-batch in the training process. Let us use B to denote a mini-batch of size m of the entire training set.

  9. Diffusion map - Wikipedia

    en.wikipedia.org/wiki/Diffusion_map

    The reason to introduce the normalization step involving is to tune the influence of the data point density on the infinitesimal transition of the diffusion. In some applications, the sampling of the data is generally not related to the geometry of the manifold we are interested in describing.