enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    and so the cross product arises, see time derivative in rotating reference frame. The vector components of the torque in the inertial and the rotating frames are related by =, where is the rotation tensor (not rotation matrix), an orthogonal tensor related to the angular velocity vector by = ˙ for any vector u.

  3. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Let the coordinate system (x 1, x 2, x 3) be an inertial frame of reference, r be the position vector of a point particle in the continuous body with respect to the origin of the coordinate system, and v = ⁠ dr / dt ⁠ be the velocity vector of that point.

  4. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    In physics, the Coriolis force is a fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise (or counterclockwise) rotation, the force acts to the right.

  5. Relative velocity - Wikipedia

    en.wikipedia.org/wiki/Relative_velocity

    where x' is the position as seen by a reference frame that is moving at speed, v, in the "unprimed" (x) reference frame. [ note 3 ] Taking the differential of the first of the two equations above, we have, d x ′ = d x − v d t {\displaystyle dx'=dx-v\,dt} , and what may seem like the obvious [ note 4 ] statement that d t ′ = d t ...

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  7. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    Then the vector value of the resultant force would be determined by the missing edge of the polygon. [2] In the diagram, the forces P 1 to P 6 are applied to the point O. The polygon is constructed starting with P 1 and P 2 using the parallelogram of forces (vertex a). The process is repeated (adding P 3 yields the vertex b, etc.). The ...

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  9. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    The resulting vector is sometimes called the resultant vector of a and b. The addition may be represented graphically by placing the tail of the arrow b at the head of the arrow a, and then drawing an arrow from the tail of a to the head of b. The new arrow drawn represents the vector a + b, as illustrated below: [7] The addition of two vectors ...