Search results
Results from the WOW.Com Content Network
An approach used by the fisher.test function in R is to compute the p-value by summing the probabilities for all tables with probabilities less than or equal to that of the observed table. In the example here, the 2-sided p -value is twice the 1-sided value—but in general these can differ substantially for tables with small counts, unlike the ...
A descriptive statistic (in the count noun sense) is a summary statistic that quantitatively describes or summarizes features from a collection of information, [1] while descriptive statistics (in the mass noun sense) is the process of using and analysing those statistics.
Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table. To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327.
Validity is the main extent to which a concept, conclusion, or measurement is well-founded and likely corresponds accurately to the real world. [1] [2] The word "valid" is derived from the Latin validus, meaning strong.
Nonparametric statistics is a type of statistical analysis that makes minimal assumptions about the underlying distribution of the data being studied. Often these models are infinite-dimensional, rather than finite dimensional, as in parametric statistics. [1]
In statistics, Grubbs's test or the Grubbs test (named after Frank E. Grubbs, who published the test in 1950 [1]), also known as the maximum normalized residual test or extreme studentized deviate test, is a test used to detect outliers in a univariate data set assumed to come from a normally distributed population.
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
Monte Carlo simulations (chains) are started with different initial values. The samples from the respective burn-in phases are discarded. From the samples (), …, (of the j-th simulation), the variance between the chains and the variance in the chains is estimated: . ¯ = = Mean value of chain j ¯ = = ¯ Mean of the means of all chains = = (¯ ¯) Variance of the means of the chains ...