Search results
Results from the WOW.Com Content Network
The golden ratio φ and its negative reciprocal −φ −1 are the two roots of the quadratic polynomial x 2 − x − 1. The golden ratio's negative −φ and reciprocal φ −1 are the two roots of the quadratic polynomial x 2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer.
[3] [6] John F. Pile, interior design professor and historian, has claimed that Egyptian architects sought the golden proportions without mathematical techniques and that it is common to see the 1.618:1 ratio, along with many other simpler geometrical concepts, in their architectural details, art, and everyday objects found in tombs. In his ...
Pyramidologists since the 19th century have argued on dubious mathematical grounds for the golden ratio in pyramid design. [b] The Parthenon, a 5th-century BC temple in Athens, has been claimed to use the golden ratio in its façade and floor plan, [47] [48] [49] but these claims too are disproved by measurement. [43]
Divina proportione (15th century Italian for Divine proportion), later also called De divina proportione (converting the Italian title into a Latin one) is a book on mathematics written by Luca Pacioli and illustrated by Leonardo da Vinci, completed by February 9th, 1498 [1] in Milan and first printed in 1509. [2]
A Penrose tiling with rhombi exhibiting fivefold symmetry. A Penrose tiling is an example of an aperiodic tiling.Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches.
The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The ratio of Seurat's painting/stretcher corresponded to a ratio of 1 to 1.502, ± 0.002 (as opposed to the golden ratio of 1 to 1.618). The compositional axes in the painting correspond to basic mathematical divisions (simple ratios that appear to approximate the golden section).