enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elastic energy - Wikipedia

    en.wikipedia.org/wiki/Elastic_energy

    Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner.

  3. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  4. Rubber band experiment - Wikipedia

    en.wikipedia.org/wiki/Rubber_band_experiment

    The T-V diagram of the rubber band experiment. The decrease in the temperature of the rubber band in a spontaneous process at ambient temperature can be explained using the Helmholtz free energy = where dF is the change in free energy, dL is the change in length, τ is the tension, dT is the change in temperature and S is the entropy.

  5. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    Young's modulus is the slope of the linear part of the stress–strain curve for a material under tension or compression.. Young's modulus (or Young modulus) is a mechanical property of solid materials that measures the tensile or compressive stiffness when the force is applied lengthwise.

  6. Electron scattering - Wikipedia

    en.wikipedia.org/wiki/Electron_scattering

    Thomson scattering is the classical elastic quantitative interpretation of the scattering process, [26] and this can be seen to happen with lower, mid-energy, photons. The classical theory of an electromagnetic wave scattered by charged particles, cannot explain low intensity shifts in wavelength.

  7. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    Elastic potential energy is the potential energy of an elastic object (for example a bow or a catapult) that is deformed under tension or compression (or stressed in formal terminology). It arises as a consequence of a force that tries to restore the object to its original shape, which is most often the electromagnetic force between the atoms ...

  8. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    This formulation takes the energy potential (W) as a function of the deformation gradient (). By also requiring satisfaction of material objectivity , the energy potential may be alternatively regarded as a function of the Cauchy-Green deformation tensor ( C := F T F {\displaystyle {\boldsymbol {C}}:={\boldsymbol {F}}^{\textsf {T}}{\boldsymbol ...

  9. Franck–Hertz experiment - Wikipedia

    en.wikipedia.org/wiki/Franck–Hertz_experiment

    Faster electrons lose most of their speed in inelastic collisions. The lost kinetic energy is deposited into the mercury atom. The atom subsequently emits light, and returns to its original state. Franck and Hertz explained their experiment in terms of elastic and inelastic collisions between the electrons and the mercury atoms.