enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".

  3. Fifth power (algebra) - Wikipedia

    en.wikipedia.org/wiki/Fifth_power_(algebra)

    In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:

  4. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...

  5. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    The term hyperpower [4] is a natural combination of hyper and power, which aptly describes tetration. The problem lies in the meaning of hyper with respect to the hyperoperation sequence. When considering hyperoperations, the term hyper refers to all ranks, and the term super refers to rank 4, or tetration.

  6. Euler's sum of powers conjecture - Wikipedia

    en.wikipedia.org/wiki/Euler's_sum_of_powers...

    Euler was aware of the equality 59 4 + 158 4 = 133 4 + 134 4 involving sums of four fourth powers; this, however, is not a counterexample because no term is isolated on one side of the equation. He also provided a complete solution to the four cubes problem as in Plato's number 3 3 + 4 3 + 5 3 = 6 3 or the taxicab number 1729.

  7. Pentation - Wikipedia

    en.wikipedia.org/wiki/Pentation

    The first three values of the expression x[5]2. The value of 3[5]2 is 7 625 597 484 987; values for higher x, such as 4[5]2, which is about 2.361 × 10 8.072 × 10 153 are much too large to appear on the graph. In mathematics, pentation (or hyper-5) is the fifth hyperoperation.

  8. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  9. Mathematical coincidence - Wikipedia

    en.wikipedia.org/wiki/Mathematical_coincidence

    The coincidence = =, correct to 2.4%, relates to the rational approximation ⁡ ⁡, or / to within 0.3%. This relationship is used in engineering, for example to approximate a factor of two in power as 3 dB (actual is 3.0103 dB – see Half-power point ), or to relate a kibibyte to a kilobyte ; see binary prefix .