enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Causality (book) - Wikipedia

    en.wikipedia.org/wiki/Causality_(book)

    Causality: Models, Reasoning, and Inference (2000; [1] updated 2009 [2]) is a book by Judea Pearl. [3] It is an exposition and analysis of causality. [4] [5] It is considered to have been instrumental in laying the foundations of the modern debate on causal inference in several fields including statistics, computer science and epidemiology. [6]

  3. The Book of Why - Wikipedia

    en.wikipedia.org/wiki/The_Book_of_Why

    The Book of Why: The New Science of Cause and Effect is a 2018 nonfiction book by computer scientist Judea Pearl and writer Dana Mackenzie. The book explores the subject of causality and causal inference from statistical and philosophical points of view for a general audience.

  4. Judea Pearl - Wikipedia

    en.wikipedia.org/wiki/Judea_Pearl

    Judea Pearl was born in Tel Aviv, British Mandate for Palestine, in 1936 to Eliezer and Tova Pearl, who were Polish Jewish immigrants, grew up in Bnei Brak. His grandfather Chaim Pearl was one of Bnei Brak's founders. [8] [9] [10] He is a descendant of Menachem Mendel of Kotzk on his mother's side.

  5. Causal model - Wikipedia

    en.wikipedia.org/wiki/Causal_model

    Judea Pearl defines a causal model as an ordered triple ,, , where U is a set of exogenous variables whose values are determined by factors outside the model; V is a set of endogenous variables whose values are determined by factors within the model; and E is a set of structural equations that express the value of each endogenous variable as a function of the values of the other variables in U ...

  6. Probabilistic causation - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_causation

    Pearl [4] argues that the entire enterprise of probabilistic causation has been misguided from the very beginning, because the central notion that causes "raise the probabilities" of their effects cannot be expressed in the language of probability theory.

  7. Causality - Wikipedia

    en.wikipedia.org/wiki/Causality

    The Halpern-Pearl definitions of causality take account of examples like these. [28] The first and third Halpern-Pearl conditions are easiest to understand: AC1 requires that Alice threw the brick and the window broke in the actual work. AC3 requires that Alice throwing the brick is a minimal cause (cf. blowing a kiss and throwing a brick).

  8. Causal graph - Wikipedia

    en.wikipedia.org/wiki/Causal_graph

    In statistics, econometrics, epidemiology, genetics and related disciplines, causal graphs (also known as path diagrams, causal Bayesian networks or DAGs) are probabilistic graphical models used to encode assumptions about the data-generating process.

  9. Causation (sociology) - Wikipedia

    en.wikipedia.org/wiki/Causation_(sociology)

    Causality, within sociology, has been the subject of epistemological debates, particularly concerning the external validity of research findings; one factor driving the tenuous nature of causation within social research is the wide variety of potential "causes" that can be attributed to a particular phenomena.