enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    The long division may begin with a non-zero remainder. The remainder is generally computed using an -bit shift register holding the current remainder, while message bits are added and reduction modulo () is performed. Normal division initializes the shift register to zero, but it may instead be initialized to a non-zero value.

  3. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    An alternate source is the W3C webpage on PNG, which includes an appendix with a short and simple table-driven implementation in C of CRC-32. [4] You will note that the code corresponds to the lsbit-first byte-at-a-time algorithm presented here, and the table is generated using the bit-at-a-time code.

  4. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    The advantage of choosing a primitive polynomial as the generator for a CRC code is that the resulting code has maximal total block length in the sense that all 1-bit errors within that block length have different remainders (also called syndromes) and therefore, since the remainder is a linear function of the block, the code can detect all 2 ...

  5. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  6. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    Given an integer a and a non-zero integer d, it can be shown that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < | d |. The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see Division algorithm.)

  7. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]

  8. Burst error-correcting code - Wikipedia

    en.wikipedia.org/wiki/Burst_error-correcting_code

    Proof. We need to prove that if you add a burst of length to a codeword (i.e. to a polynomial that is divisible by ()), then the result is not going to be a codeword (i.e. the corresponding polynomial is not divisible by ()).

  9. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    A modulus of 255 is used above and in examples below for Fletcher-16, however some real-world implementations use 256. The TCP protocol's alternate checksum has Fletcher-16 with a 256 modulus, [3] as do the checksums of UBX-* messages from a U-blox GPS. [4] Which modulus is used is dependent on the implementation.