Search results
Results from the WOW.Com Content Network
Comparison and Oscillation Theory of Linear Differential Equations. Elsevier. ISBN 978-1-4832-6667-1. Teschl, G. (2012). Ordinary Differential Equations and Dynamical Systems. Providence: American Mathematical Society. ISBN 978-0-8218-8328-0. Weidmann, J. (1987). Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics ...
Oscillation of a sequence (shown in blue) is the difference between the limit superior and limit inferior of the sequence. In mathematics, the oscillation of a function or a sequence is a number that quantifies how much that sequence or function varies between its extreme values as it approaches infinity or a point.
The Stuart–Landau equation in fact describes an entire class of limit-cycle oscillators in the weakly-nonlinear limit. The form of the classical Stuart–Landau equation is much simpler, and perhaps not surprisingly, can be quantized by a Lindblad equation which is also simpler than the Lindblad equation for the van der Pol oscillator.
Stable limit cycle (shown in bold) and two other trajectories spiraling into it Stable limit cycle (shown in bold) for the Van der Pol oscillator. In mathematics, in the study of dynamical systems with two-dimensional phase space, a limit cycle is a closed trajectory in phase space having the property that at least one other trajectory spirals into it either as time approaches infinity or as ...
Quantity (common name/s) (Common) symbol/s SI units Dimension Number of wave cycles N: dimensionless dimensionless (Oscillatory) displacement Symbol of any quantity which varies periodically, such as h, x, y (mechanical waves), x, s, η (longitudinal waves) I, V, E, B, H, D (electromagnetism), u, U (luminal waves), ψ, Ψ, Φ (quantum mechanics).
Figure 2: A simple harmonic oscillator with small periodic damping term given by ¨ + ˙ + =, =, ˙ =; =.The numerical simulation of the original equation (blue solid line) is compared with averaging system (orange dashed line) and the crude averaged system (green dash-dotted line). The left plot displays the solution evolved in time and ...
The Weierstrass approximation theorem states that for every continuous function f(x) defined on an interval [a,b], there exists a set of polynomial functions P n (x) for n=0, 1, 2, ..., each of degree at most n, that approximates f(x) with uniform convergence over [a,b] as n tends to infinity, that is,
In addition, an oscillating system may be subject to some external force, as when an AC circuit is connected to an outside power source. In this case the oscillation is said to be driven . The simplest example of this is a spring-mass system with a sinusoidal driving force.