Search results
Results from the WOW.Com Content Network
Logarithms to any other base can be calculated by reversing the procedure for calculating powers of a number. For example, log2 values can be determined by lining up either leftmost or rightmost 1 on the C scale with 2 on the LL2 scale, finding the number whose logarithm is to be calculated on the corresponding LL scale, and reading the log2 ...
The matrix power is the transition matrix between the state now and the state at a time n steps in the future. So computing matrix powers is equivalent to solving the evolution of the dynamical system. In many cases, matrix powers can be expediently computed by using eigenvalues and eigenvectors.
Toggle Power series subsection. 2.1 Low-order polylogarithms. ... The following is a useful property to calculate low-integer-order polylogarithms recursively in ...
Power(x, −n) = Power(x −1, n), Power(x, −n) = (Power(x, n)) −1. The approach also works in non-commutative semigroups and is often used to compute powers of matrices. More generally, the approach works with positive integer exponents in every magma for which the binary operation is power associative.
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
The most direct method of calculating a modular exponent is to calculate b e directly, then to take this number modulo m. Consider trying to compute c, given b = 4, e = 13, and m = 497: c ≡ 4 13 (mod 497) One could use a calculator to compute 4 13; this comes out to 67,108,864. Taking this value modulo 497, the answer c is determined to be 445.
Faulhaber also knew that if a sum for an odd power is given by = + = + + + + then the sum for the even power just below is given by = = + + (+ + + (+)). Note that the polynomial in parentheses is the derivative of the polynomial above with respect to a .