Search results
Results from the WOW.Com Content Network
In computer science, divide and conquer is an algorithm design paradigm. A divide-and-conquer algorithm recursively breaks down a problem into two or more sub-problems of the same or related type, until these become simple enough to be solved directly. The solutions to the sub-problems are then combined to give a solution to the original problem.
The canonical application of topological sorting is in scheduling a sequence of jobs or tasks based on their dependencies.The jobs are represented by vertices, and there is an edge from x to y if job x must be completed before job y can be started (for example, when washing clothes, the washing machine must finish before we put the clothes in the dryer).
Slowsort is a sorting algorithm.It is of humorous nature and not useful. It is a reluctant algorithm based on the principle of multiply and surrender (a parody formed by taking the opposites of divide and conquer).
Samplesort is a sorting algorithm that is a divide and conquer algorithm often used in parallel processing systems. [1] Conventional divide and conquer sorting algorithms partitions the array into sub-intervals or buckets. The buckets are then sorted individually and then concatenated together.
Conversely, some sorting algorithms can be derived by repeated application of a selection algorithm; quicksort and quickselect can be seen as the same pivoting move, differing only in whether one recurses on both sides (quicksort, divide-and-conquer) or one side (quickselect, decrease-and-conquer). A kind of opposite of a sorting algorithm is a ...
The difference between pigeonhole sort and counting sort is that in counting sort, the auxiliary array does not contain lists of input elements, only counts: 3: 1; 4: 0; 5: 2; 6: 0; 7: 0; 8: 1; For arrays where N is much larger than n, bucket sort is a generalization that is more efficient in space and time.
The traditional ld (Unix linker) requires that its library inputs be sorted in topological order, since it processes files in a single pass. This applies both to static libraries ( *.a ) and dynamic libraries ( *.so ), and in the case of static libraries preferably for the individual object files contained within.
The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...