Search results
Results from the WOW.Com Content Network
The k shortest path routing problem is a generalization of the shortest path routing problem in a given network. It asks not only about a shortest path but also about next k−1 shortest paths (which may be longer than the shortest path). A variation of the problem is the loopless k shortest paths.
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
Maximum lengths of snakes (L s) and coils (L c) in the snakes-in-the-box problem for dimensions n from 1 to 4. The problem of finding the longest path or cycle that is an induced subgraph of a given hypercube graph is known as the snake-in-the-box problem. Szymanski's conjecture concerns the suitability of a hypercube as a network topology for ...
Problem 2. Find the path of minimum total length between two given nodes P and Q. We use the fact that, if R is a node on the minimal path from P to Q, knowledge of the latter implies the knowledge of the minimal path from P to R. is a paraphrasing of Bellman's Principle of Optimality in the context of the shortest path problem.
Branch and bound (BB, B&B, or BnB) is a method for solving optimization problems by breaking them down into smaller sub-problems and using a bounding function to eliminate sub-problems that cannot contain the optimal solution. It is an algorithm design paradigm for discrete and combinatorial optimization problems, as well as mathematical ...
For example, enforcing arc consistency on binary acyclic problems allows for telling whether the problem is satisfiable. Enforcing strong directional i {\displaystyle i} -consistency allows telling the satisfiability of problems that have induced width i − 1 {\displaystyle i-1} according to the same order.
Otherwise, suppose that t 1 is higher than t 2 for more than one (the other case is symmetric). Join follows the right spine of t 1 until a node c which is balanced with t 2. At this point a new node with left child c, root k and right child t 2 is created to replace c. The new node satisfies the AVL invariant, and its height is one greater ...
Even, Itai & Shamir (1976) describe a technique involving limited backtracking for solving constraint satisfaction problems with binary variables and pairwise constraints. They apply this technique to a problem of classroom scheduling, but they also observe that it applies to other problems including 2-SAT.