Search results
Results from the WOW.Com Content Network
Because the level of circulatory glucose is largely determined by the intake of dietary carbohydrates, diet controls major aspects of metabolism via insulin. [18] In humans, insulin is made by beta cells in the pancreas, fat is stored in adipose tissue cells, and glycogen is both stored and released as needed by liver cells. Regardless of ...
The cells release the glucose into the bloodstream, increasing blood sugar levels. Hypoglycemia, the state of having low blood sugar, is treated by restoring the blood glucose level to normal by the ingestion or administration of dextrose or carbohydrate foods. It is often self-diagnosed and self-medicated orally by the ingestion of balanced meals.
Glucose-6-phosphate can be used in other metabolic pathways or dephosphorylated to free glucose. Whereas free glucose can easily diffuse in and out of the cell, the phosphorylated form (glucose-6-phosphate) is locked in the cell, a mechanism by which intracellular glucose levels are controlled by cells.
Beta cells release insulin in response to rising levels of glucose. Insulin enables many types of cells to import and use glucose, and signals the liver to synthesize glycogen. Alpha cells produce less glucagon in response to rising glucose levels, and more glucagon if blood glucose is low. Glucagon serves as a signal to the liver to break down ...
Cellular uptake of glucose occurs in response to insulin signals, and glucose is subsequently broken down through glycolysis, lowering blood sugar levels. However, insulin resistance or low insulin levels seen in diabetes result in hyperglycemia, where glucose levels in the blood rise and glucose is not properly taken up by cells.
The second phase is a slow release of newly formed vesicles that are triggered regardless of the blood sugar level. Glucose enters the beta cells and goes through glycolysis to form ATP that eventually causes depolarization of the beta cell membrane (as explained in Insulin secretion section of this article). The depolarization process causes ...
The cells will use glucose for energy as normal, and any glucose not used for energy will enter the polyol pathway. When blood glucose is normal (about 100 mg/dL or 5.5 mmol/L), this interchange causes no problems, as aldose reductase has a low affinity for glucose at normal concentrations. [citation needed]
GLUT4 has a Km value for glucose of about 5 mM, which as stated above is the normal blood glucose level in healthy individuals. GLUT4 is the most abundant glucose transporter in skeletal muscle and is thus considered to be rate limiting for glucose uptake and metabolism in resting muscles. [ 8 ]