enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat of combustion - Wikipedia

    en.wikipedia.org/wiki/Heat_of_combustion

    In all, the higher heating value of hydrogen is 18.2% above its lower heating value (142 MJ/kg vs. 120 MJ/kg). For hydrocarbons, the difference depends on the hydrogen content of the fuel. For gasoline and diesel the higher heating value exceeds the lower heating value by about 10% and 7%, respectively, and for natural gas about 11%.

  3. Energy density Extended Reference Table - Wikipedia

    en.wikipedia.org/wiki/Energy_density_Extended...

    Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000

  4. Energy content of biofuel - Wikipedia

    en.wikipedia.org/wiki/Energy_content_of_biofuel

    Specific energy is energy per unit mass, which is used to describe the chemical energy content of a fuel, expressed in SI units as joule per kilogram (J/kg) or equivalent units. [1] Energy density is the amount of chemical energy per unit volume of the fuel, expressed in SI units as joule per litre (J/L) or equivalent units. [2]

  5. Gasoline gallon equivalent - Wikipedia

    en.wikipedia.org/wiki/Gasoline_gallon_equivalent

    One GGE of natural gas is 126.67 cubic feet (3.587 m 3) at standard conditions. This volume of natural gas has the same energy content as one US gallon of gasoline (based on lower heating values: 900 BTU/cu ft (9.3 kWh/m 3) of natural gas and 114,000 BTU/US gal (8.8 kWh/L) for gasoline). [22]

  6. British thermal unit - Wikipedia

    en.wikipedia.org/wiki/British_thermal_unit

    The energy content (high or low heating value) of a volume of natural gas varies with the composition of the natural gas, which means there is no universal conversion factor for energy to volume. 1 cubic foot (28 litres) of average natural gas yields ≈ 1,030 Btu (between 1,010 Btu and 1,070 Btu, depending on quality, when burned)

  7. Energy density - Wikipedia

    en.wikipedia.org/wiki/Energy_density

    Specific energy (MJ/kg) Energy density (MJ/L) Specific energy Energy density (W⋅h/L) Comment Antimatter: 89 875 517 874 ≈ 90 PJ/kg: Depends on the density of the antimatter's form 24 965 421 631 578 ≈ 25 TW⋅h/kg Depends on the density of the antimatter's form Annihilation, counting both the consumed antimatter mass and ordinary matter mass

  8. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    For gases, departure from 3 R per mole of atoms is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to ...

  9. Therm - Wikipedia

    en.wikipedia.org/wiki/Therm

    The therm (symbol, thm) is a non-SI unit of heat energy equal to 100,000 British thermal units (BTU), [1] and approximately 105 megajoules, 29.3 kilowatt-hours, 25,200 kilocalories and 25.2 thermies. One therm is the energy content of approximately 100 cubic feet (2.83 cubic metres) of natural gas at standard temperature and pressure. However ...