Search results
Results from the WOW.Com Content Network
Looking out from the axis, sometimes the winding is on the inside of the core and sometimes on the outside of the core. It is not axially symmetric in the near region. However, at points a distance of several times the winding spacing, the toroid does look symmetric. [7] There is still the problem of the circumferential current.
With the toroidal core winding technology an electric coil or winding is created by winding an electrical conductor (e.g. copper wire) through the circular ring and evenly distributing it over the circumference (Toroidal inductors and transformers, toroidal chokes). Before the winding starts, the Toroidal / Magnetic core is mounted into a ...
A Rogowski coil is a toroid of wire used to measure an alternating current I(t) through a cable encircled by the toroid. The picture shows a Rogowski coil encircling a current-carrying cable. The picture shows a Rogowski coil encircling a current-carrying cable.
Non-inductive bifilar winding Nikola Tesla's flat inductive bifilar coil. A bifilar coil is an electromagnetic coil that contains two closely spaced, parallel windings. In electrical engineering, the word bifilar describes wire which is made of two filaments or strands. It is commonly used to denote special types of winding wire for ...
A toroidal topload is often preferred to other shapes, such as a sphere. A toroid with a major diameter that is much larger than the secondary diameter provides improved shaping of the electric field at the topload. This provides better protection of the secondary winding (from damaging streamer strikes) than a sphere of similar diameter.
Diagram of typical transformer configurations. The wire or conductor which constitutes the coil is called the winding. [5] The hole in the center of the coil is called the core area or magnetic axis. [6]
The flyback transformer operates CRT-display devices such as television sets and CRT computer monitors. The voltage and frequency can each range over a wide scale, depending on the device. For example, a large color TV CRT may require 20 to 50 kV with a horizontal scan rate of 15.734 kHz for NTSC devices and 15.625 kHz for PAL devices.
As the excitation winding is rotated through 180 degrees, the voltage induced in the series winding changes from adding to the supply voltage to opposing it. By selection of the ratios of the number of turns on the excitation and series windings, the range of voltage can be adjusted, say, plus or minus 20% of the supply voltage, for example.