Search results
Results from the WOW.Com Content Network
A lower ratio leads to higher strength and durability, but may make the mix more difficult to work with and form. Workability can be resolved with the use of plasticizers or super-plasticizers. A higher ratio gives a too fluid concrete mix resulting in a too porous hardened concrete of poor quality.
Abrams' law (also called Abrams' water-cement ratio law) [1] is a concept in civil engineering. The law states the strength of a concrete mix is inversely related to the mass ratio of water to cement. [1] [2] As the water content increases, the strength of concrete decreases. Abrams’ law is a special case of a general rule formulated ...
The ultimate strength of concrete is influenced by the water-cementitious ratio (w/cm), the design constituents, and the mixing, placement and curing methods employed. All things being equal, concrete with a lower water-cement (cementitious) ratio makes a stronger concrete than that with a higher ratio. [2]
It is a mixture of sand, aggregate, cement and water. It is placed in a mould, or form, as a liquid, and then it sets (goes off), due to a chemical reaction between the water and cement. The hardening of the concrete is called hydration. The reaction is exothermic (gives off heat). Concrete increases in strength continually from the day it is cast.
It uses a simple Archimedes' screw to mix (clockwise) and to lift the concrete to the delivery chute. Ready-mix concrete (RMC) is concrete that is manufactured in a batch plant, according to each specific job requirement, then delivered to the job site "ready to use". [1] There are two types with the first being the barrel truck or in–transit ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
High-strength concrete has a compressive strength greater than 40 MPa (6000 psi). In the UK, BS EN 206-1 [3] defines High strength concrete as concrete with a compressive strength class higher than C50/60. High-strength concrete is made by lowering the water-cement (W/C) ratio to 0.35 or lower.
The energy absorption capacity of foamed concrete was approximated from drop testing and found to vary from 4 to 15 MJ/m 3 depending on its density. With optimum absorption estimated from a 1000 kg/m 3 moderate density mix at water to cement (w/c) ratios from 0·6 to 0·7. [17]