Search results
Results from the WOW.Com Content Network
CuPy is a part of the NumPy ecosystem array libraries [7] and is widely adopted to utilize GPU with Python, [8] especially in high-performance computing environments such as Summit, [9] Perlmutter, [10] EULER, [11] and ABCI. [12] CuPy is a NumFOCUS sponsored project. [13]
CUDA is designed to work with programming languages such as C, C++, Fortran and Python. This accessibility makes it easier for specialists in parallel programming to use GPU resources, in contrast to prior APIs like Direct3D and OpenGL , which require advanced skills in graphics programming. [ 7 ]
PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo, a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and inference performance across major cloud platforms. [25] [26]
JAX is a machine learning framework for transforming numerical functions developed by Google with some contributions from Nvidia. [2] [3] [4] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and OpenXLA's XLA (Accelerated Linear Algebra).
Anaconda is an open source [9] [10] data science and artificial intelligence distribution platform for Python and R programming languages.Developed by Anaconda, Inc., [11] an American company [1] founded in 2012, [11] the platform is used to develop and manage data science and AI projects. [9]
We use the Jetson Nano (4GB) with NVIDIA JetPack SDK version 4.6.1, which comes with pre- installed Python 3.6, CUDA 10.2, and OpenCV 4.1.1. We further install PyTorch 1.10 to enable the GPU accelerated PhyCV. We demonstrate the results and metrics of running PhyCV on Jetson Nano in real-time for edge detection and low-light enhancement tasks.
Scala, Python No No Yes Yes Yes Yes Caffe: Berkeley Vision and Learning Center 2013 BSD: Yes Linux, macOS, Windows [3] C++: Python, MATLAB, C++: Yes Under development [4] Yes No Yes Yes [5] Yes Yes No ? No [6] Chainer: Preferred Networks 2015 BSD: Yes Linux, macOS: Python: Python: No No Yes No Yes Yes Yes Yes No Yes No [7] Deeplearning4j
Installation instructions are provided for Linux and Windows in the official AMD ROCm documentation. ROCm software is currently spread across several public GitHub repositories. Within the main public meta-repository , there is an XML manifest for each official release: using git-repo , a version control tool built on top of Git , is the ...