Search results
Results from the WOW.Com Content Network
The Bode phase plot is the graph of the phase, commonly expressed in degrees, of the argument function ((=)) as a function of . The phase is plotted on the same logarithmic ω {\displaystyle \omega } -axis as the magnitude plot, but the value for the phase is plotted on a linear vertical axis.
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
For example, f 0 dB = βA 0 × f 1. Next, the choice of pole ratio τ 1 /τ 2 is related to the phase margin of the feedback amplifier. [9] The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position.
In signal processing, linear phase is a property of a filter where the phase response of the filter is a linear function of frequency.The result is that all frequency components of the input signal are shifted in time (usually delayed) by the same constant amount (the slope of the linear function), which is referred to as the group delay.
The Bode plot of a transimpedance amplifier that has a compensation capacitor in the feedback path is shown in Fig. 5, where the compensated feedback factor plotted as a reciprocal, 1/β, starts to roll off before f i, reducing the slope at the intercept. The loop gain is still unity, but the total phase shift is not a full 360°.
In this particular example, because the output is 90 degrees out of phase from the input, the Lissajous curve is a circle, and is rotating counterclockwise. When the input to an LTI system is sinusoidal, the output is sinusoidal with the same frequency, but it may have a different amplitude and some phase shift .
Help; Learn to edit; Community portal; Recent changes; Upload file; Special pages
A simple example of this is a pure time delay of time T, which has amplitude 1 at any frequency regardless of T, but has a phase dependent on T (specifically, phase = 2π × T × frequency). There is, however, a unique amplitude-vs-phase relation in the special case of a minimum phase system, [9] sometimes called the Bode gain–phase relation.